

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL Further Pure Mathematics 3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WFM03_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$ $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1.	$y = 9\cosh x$	$x + 3\sinh x + 7x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9\sinh x + 3\cosh x + 7$	Correct derivative	B1
	$9\frac{\left(e^{x}-e^{-x}\right)}{2}+3\frac{\left(e^{x}+e^{-x}\right)}{2}+7=0$	Replaces sinhx and coshx by the correct exponential forms	M1
	Note that the first 2 marks of	can score the other way round:	
	M1: $y = 9 \frac{(e^x + e^-)}{2}$	$+3\frac{(e^{x}-e^{-x})}{2}+7x$	
	B1: $\frac{dy}{dx} = 9 \frac{\left(e^x - e^{-x}\right)}{2} + 3 \frac{\left(e^x + e^{-x}\right)}{2} + 7$		
	$12e^{2x} + 14e^x - 6 = 0$ oe	M1: Obtains a quadratic in e ^x A1: Correct quadratic	M1A1
	$(3e^x - 1)(2e^x + 3) = 0 \Longrightarrow e^x = \dots$	Solves their quadratic as far as $e^x =$	M1
	$x = \ln\left(\frac{1}{3}\right)$	cso (Allow –ln3) $e^x = -\frac{3}{2}$ need not be seen. Extra answers, award A0	A1
	A.74		(6)
	Alte	rnative	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 9\sinh x + 3\cosh x + 7$	Correct derivative	B1
	$9\sinh x = -3\cosh x - 7 \Rightarrow 81\sin^2 x$	$\sinh^2 x = 9\cosh^2 x + 42\cosh x + 49$	
	$72\cosh^2 x - 42\cosh x - 130 = 0$	Squares and attempts quadratic in coshx	M1
$(3\cosh x - 5)(12\cosh x + 13) = 0 \Rightarrow \cosh x = \frac{5}{3}$ M1: Solves quadratic A1: Correct value			M1A1
	$x = \ln\left(\frac{5}{3} \pm \sqrt{\left(\frac{5}{3}\right)^2 - 1}\right)$	Use of ln form of arcosh	M1
	$x = \ln\left(\frac{1}{3}\right)$	cso (Allow – ln3)	A1

NB: Ignore any attempts to find the *y* coordinate

Question Number	Scheme	Notes	Marks
2	$\frac{x^2}{25} + \frac{y^2}{4} = 1, P(5\cos\theta)$	$\cos\theta, 2\sin\theta)$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -5\sin\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos\theta$ or	Correct derivatives or correct implicit differentiation	B1
	$\frac{2x}{25} + \frac{2y}{4} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{2\cos\theta}{-5\sin\theta}$	Divides their derivatives correctly or substitutes and rearranges	M1
	$M_N = \frac{5\sin\theta}{2\cos\theta}$	Correct perpendicular gradient rule	M1
	$y - 2\sin\theta = \frac{5\sin\theta}{2\cos\theta} (x - 5\cos\theta)$	Correct straight line method (any complete method) Must use their gradient of the normal.	M1
	$5x\sin\theta - 2y\cos\theta = 21\sin\theta\cos\theta^*$		
			(5)
(b)	At Q , $x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$		B1
	$M \text{ is } \left(\frac{0 + 5\cos\theta}{2}, \frac{2\sin\theta - \frac{21}{2}\sin\theta}{2}\right)$ $\left(=\left(\frac{5}{2}\cos\theta, -\frac{17}{4}\sin\theta\right)\right)$	Correct mid-point method for at least one coordinate Can be implied by a correct <i>x</i> coordinate	M1
	L cuts x-axis at $\frac{21}{5}$ cos θ		B1
	Area $OPM = OLP + OLM$ $\frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot 2 \sin \theta + \frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot \frac{17}{4} \sin \theta$	M1: Correct triangle area method using their coordinates A1: Correct expression	M1A1
	$=\frac{105}{16}\sin 2\theta$	Or $6.5625 \sin 2\theta$ must be positive	A1(6)
			Total 11
	ALTs for (b)		
1	Using Area OPM		
	See above for B1M1		B1M1
	Area $\triangle OPM = \frac{1}{2} \begin{vmatrix} 0 & 5\cos\theta & \frac{5}{2}\cos\theta & 0 \end{vmatrix}$	M1: Correct determinant with their coords, with 2 or 3 points. $0 \atop 0$ should be	M1A1
	Area $\triangle OPM = \frac{1}{2} \begin{vmatrix} 0 & 5\cos\theta & \frac{5}{2}\cos\theta & 0\\ 0 & 2\sin\theta & -\frac{17}{4}\sin\theta & 0 \end{vmatrix}$	at both or neither end. A1: Correct determinant (There are more complicated determinants using the 3 points.)	

Ph	/sic	sAn	dMa	aths∃	Γutor.	com
	v $\circ v$	<i>)</i> (GIVIC	4 CI I O I	ı atoı.	COLL

	PhysicsAndMathsT	utor.com	
	$= \frac{1}{2} \left(0 + 5\sin\theta\cos\theta + 0 - 0 + \frac{85}{4}\sin\theta\cos\theta - 0 \right)$	A1	A1
	$=\frac{105}{4}\sin\theta\cos\theta$		
	$=\frac{105}{16}\sin 2\theta$		A1
2	Using Area OPQ:		
	At Q , $x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$		B1
	At $Q, x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$ Area $\triangle OPQ = \frac{1}{2}\begin{vmatrix} 5\cos\theta & 0\\ 2\sin\theta & -\frac{21}{2}\sin\theta \end{vmatrix}$	Can be implied by the following line	M1A1
	$=\frac{1}{2}\times\frac{105}{2}\sin\theta\cos\theta$	OQ is base, x coord of P is height	A1
	$=\frac{105}{8}\sin 2\theta$		
	Area $OPM = \frac{1}{2}$ Area OPQ		M1
	$=\frac{105}{16}\sin 2\theta$		A1
3	At Q , $x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$		B1
	$M ext{ is } \left(\frac{0 + 5\cos\theta}{2}, \frac{2\sin\theta - \frac{21}{2}\sin\theta}{2} \right) \qquad \left(= \left(\frac{1}{2} \sin\theta - \frac{2}{2}\sin\theta - \frac{2}{2}\sin\theta}{2} \right) \right)$	$\left(\frac{5}{2}\cos\theta, -\frac{17}{4}\sin\theta\right)$	M1
	$OP = \sqrt{4\sin^2\theta + 25\cos^2\theta} \left(= \sqrt{4 + 21\cos^2\theta} \right)$		B1
	$d = \frac{\frac{5}{2}\cos\theta \times \frac{2\sin\theta}{5\cos\theta} + \frac{17}{4}\sin\theta}{\sqrt{\frac{4\sin^2\theta}{25\cos^2\theta} + 1}} = \frac{\frac{21}{4}\sin\theta}{\sqrt{\frac{4 + 21\cos^2\theta}{25\cos^2\theta}}}$		
	Area = $\frac{1}{2} \times \frac{\frac{21}{4}\sin\theta}{\sqrt{\frac{4+21\cos^2\theta}{25\cos^2\theta}}} \times \sqrt{4+21\cos^2\theta}$		M1A1
	$=\frac{105}{16}\sin 2\theta$		A1
	t	•	

Question Number	Scheme	Notes	Marks
3(a)	$x^2 + 4x + 13 \equiv (x+2)^2 + 9$		B1
	$\int \frac{1}{(x+2)^2+9} dx = \frac{1}{3} \arctan\left(\frac{x+2}{3}\right)$	M1: $k \arctan f(x)$.	MIAI
	$\int (x+2)^2 + 9^{-3} $ arctan (3)	A1: Correct expression	M1A1
	$\left[\frac{1}{3}\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^{1} = \frac{1}{3}\left(\arctan 1 - \arctan 0\right)$	Correct use of limits arctan0 need not be shown	M1
	$\frac{\pi}{12}$	cao	A1
ALT:	$\mathbf{Sub} \ x + 2 = 3\tan t$		(5)
ALI.	$x^2 + 4x + 13 \equiv (x+2)^2 + 9$		B1
	$\frac{dx}{dt} = 3\sec^2 t$ $x = -2$, $\tan t = 0$, $t = 0$; $x = 1$,	$\tan t = 1, \ t = \frac{\pi}{4}$	
	$\int \frac{3\sec^2 t}{9\tan^2 t + 9} dt = \frac{1}{3} \int dt = \frac{1}{3}t$	M1 sub and integrate inc use of $tan^2 + 1 = sec^2$ A1 Correct expression Ignore limits	M1A1
	$\left[\frac{\pi}{12}\right]_0^{\frac{\pi}{4}}.$	Either change limits and substitute Or reverse substitution and substitute original imits	M1
	$\frac{\pi}{12}$	cao	A1
(b)	$4x^{2} - 12x + 34 = 4\left(x - \frac{3}{2}\right)^{2} + 25$ or $(2x - 3)^{2} + 25$	M1: $4(x \pm p)^2 \pm q$, $(p, q \neq 0)$ A1: $4(x - \frac{3}{2})^2 + 25$	M1A1
	$\int \frac{1}{\sqrt{4\left(x-\frac{3}{2}\right)^2+25}} dx = \frac{1}{2} \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{25}{4}}} dx = \frac{1}{2} \operatorname{arsinh}\left(\frac{x-\frac{3}{2}}{\frac{5}{2}}\right)$ M1: karsinh f(x). A1: Correct expression		
	$\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{x-\frac{3}{2}}{\frac{5}{2}}\right)\right]_{-1}^{4} = \frac{1}{2}\left(\operatorname{arsinh}\left(1\right) - \operatorname{arsinh}\left(-\frac{3}{2}\right)\right)$	1)) Correct use of limits	M1
	$= \frac{1}{2} \left(\ln \left(1 + \sqrt{2} \right) - \ln \left(-1 + \sqrt{2} \right) \right)$	Uses the logarithmic form of arsinh	M1
	$= \frac{1}{2} \ln \left(3 + 2\sqrt{2} \right) \text{ or } \ln \left(1 + \sqrt{2} \right)$	cao	A1
			(7)
			Total 12

ALT:	Second M1A1	71.00111	
	Sub $2x - 3 = u$ or $2x - 3 = u$	$= 5 \sinh u$	
	$\int_{\operatorname{arsinh}^{-1}}^{\operatorname{arsinh}^{-1}} \frac{1}{\sqrt{25\sinh^2 u + 25}} 5 \cosh u du = \left[\frac{1}{2} \operatorname{arsinh} \left(\frac{u}{5} \right) \right]_{-5}^{5}$	$\int_{-5}^{5} \frac{1}{2\sqrt{u^2 + 25}} du = \left[\frac{1}{2} \operatorname{arsinh} \left(\frac{u}{5} \right) \right]$	M1A1

$\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & -1 & 1 \\ k & 1 & k \\ 0 & 1 & 3 \end{pmatrix} \text{ or minors} \begin{pmatrix} 3-k & -4 & -k-1 \\ 3k & 3 & 0 \\ k & 1 & 1+k \end{pmatrix} \text{ or cofactors} \begin{pmatrix} 3-k & 4 & -k-1 \\ -3k & 3 & 0 \\ k & -1 & 1+k \end{pmatrix} \text{ B1}$ $\mathbf{M}^{\mathrm{T}} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix} \text{ or minors} \begin{pmatrix} 3-k & 4 & -k-1 \\ -3k & 3 & 0 \\ k & -1 & 1+k \end{pmatrix} \text{ B1}$ $\mathbf{M}1: \text{ Identifiable full attempt at inverse including reciprocal of determinant. Could be indicated by at least 6 correct elements.}$ $\mathbf{A} \text{ If: Two rows or two columns correct (follow through their determinant but not incorrect entries in the matrices used)}$ $\mathbf{A} \text{ If: Fully correct inverse (follow through as before)}$ $\mathbf{NB: If every element is the negative of the correct element, allow M1A1A0}$ $\mathbf{MN} = \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \Rightarrow \mathbf{N} = \mathbf{M}^{-1} \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M1: Multiplies the given}$	
$\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k $	
$\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k &$	
(b) $\mathbf{MN} = \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \Rightarrow \mathbf{N} = \mathbf{M}^{-1} \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$ Correct statement B1 M1: Multiplies the given	ftA1ft
M1: Multiplies the given	(3)
$\mathbf{N} = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 \\ 4 & 3 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 6 \\ 7 & 5 & 10 \\ 0 & -1 & -3 \end{pmatrix}$ $\frac{\text{matrix by their } \mathbf{M}^{-1} \text{ in the correct order Must include the matrix } (-1 \text{ each error}). \text{ If left with } \frac{1}{3} \text{ outside the matrix award A0}$	
	2, 1, 0)
To	(4)

Question Number	Scheme		Notes	Marks
5(a)	$y = \operatorname{artanh}(\cos x)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - \cos^2 x} \times -\sin x$	Correct use	of the chain rule	M1
	$\frac{dy}{dx} = \frac{1}{1 - \cos^2 x} \times -\sin x$ $= \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$	A1: Correct	completion with no errors	A1
				(2)
	Alterna			
	$\tanh y = \cos x \Rightarrow \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = -\sin^2 y$	1 <i>X</i>		
	$\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-\sin x}{1 - \cos^2 x}$		Correct differentiation to obtain a function of <i>x</i>	M1
	$= \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x *$		A1: Correct completion with no errors	A1
	Alternative 2			
	$\operatorname{artanh}(\cos x) = \frac{1}{2} \ln \left(\frac{1 + \cos x}{1 - \cos x} \right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x (1 - \cos x) - \sin x}{(1 - \cos x)^2}$	$x(1+\cos x)$	Correct differentiation to obtain a function of <i>x</i>	M1
	$= \frac{-2\sin x}{2(1-\cos^2 x)} = -\csc x$		A1: Correct completion with no errors	A1
(b)	$\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{art}$		~	M1A1
	M1: Parts in the correct direct		•	
	$\left[\sin x \operatorname{artanh}\left(\cos x\right) + x\right]_{0}^{\frac{\pi}{6}} = \frac{1}{2}\operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\left(-\left(0\right)\right)$			
	M1: Correct use of limits on either part (provided both parts are integrated). Lower limit need not be shown			
	$= \frac{1}{4} \ln \left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}} \right) + \frac{\pi}{6}$ Use of the logarithms of the logarithms.		ogarithmic form of artanh	M1
	$= \frac{1}{4} \ln \left(7 + 4\sqrt{3} \right) + \frac{\pi}{6} \text{ or } \frac{1}{2} \ln \left(2 + \sqrt{3} \right) + \frac{\pi}{6}$	Cao (oe)		A1
	The last 2 M marks may be gained in reverse order.			(5)
				m
				Total 7

Question Number	Scheme	Notes	Marks
6(a)	$\overrightarrow{AB} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \ \overrightarrow{AC} = \begin{pmatrix} 1\\-1\\3 \end{pmatrix}, \ \overrightarrow{BC} = \begin{pmatrix} 3\\-2\\2 \end{pmatrix}$	Two correct vectors in Π Can be negatives of those shown	B1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix}$	M1: Attempt cross product of two vectors lying in Π (At least one no. to be correct.)	M1A1
	$\begin{vmatrix} 1 & -1 & 3 \end{vmatrix} \begin{pmatrix} 1 \end{pmatrix}$	A1: Correct normal vector	
	$ \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 4 + 14 + 3 $	Attempt scalar product with their normal and a point in the plane	dM1
	4x + 7y + z = 21	Cao (oe)	A1
	(a) Altern	ative	
i	a+2b+3c=d		
	-a+3b+4c=d $2a+b+6c=d$	Correct equations	B1
	$2a+b+6c = d$ $a = \frac{4}{21}d, b = \frac{1}{3}d, c = \frac{1}{21}d$	M1: Solve for <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>d</i> A1: Correct equations	M1A1
	$d = 21 \Rightarrow a = \dots, b = \dots, c = \dots$	Obtains values for a, b, c and d	M1
	4x + 7y + z = 21	Cao (oe)	A1
			(5)
	Alternative: Using $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$ where \mathbf{b} a	\mathbf{c} are vectors in Π	(-)
	Two correct vectors in the plane	See main scheme	B1
	$\operatorname{Eg} \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$		M1
	x = 1 - 2s + t $y = 2 + s - t$	Deduce 3 correct equations	A1
	z = 3 + s + 3t $4x + 7y + z = 21$	M1: Eliminate <i>s</i> , <i>t</i> A1: Cao	M1A1
(b)	$AD\Box AB \times AC$	Attempt suitable triple product	M1
	$= \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} k-1 \\ 2 \\ 11 \end{pmatrix} = 4k - 4 + 14 + 11$		
	$\therefore \frac{1}{6}(4k+21)=6$	M1: Set $\frac{1}{6}$ (their triple product) = 6 A1: Correct equation	dM1A1
	$k = \frac{15}{4}$	Cao (oe)	A1

PhysicsAndMathsTutor.com				
(b) Al	ternative			
Area ABC = $\frac{1}{2} \left \overrightarrow{AB} \right \left \overrightarrow{AC} \right = \frac{1}{2} \sqrt{6} \sqrt{11}$ $D \text{ to } \Pi \text{ is } \frac{4k + 28 + 14 - 21}{\sqrt{16 + 49 + 1}}$	Attempt area ABC and distance between D and Π	M1		
$\frac{1}{6}\sqrt{6}\sqrt{11}\frac{4k+28+14-21}{\sqrt{16+49+1}} = 6$	M1: Set $\frac{1}{3}$ (their area x their distance) = 6 A1: Correct equation	dM1A1		
$k = \frac{15}{4}$	Cao (oe)	A1		
		(4)		
		Total 9		

Question Number	Scheme	Notes	Marks	
7	$x = 3t^4, y = 4t^3$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 12t^3, \frac{\mathrm{d}y}{\mathrm{d}t} = 12t^2$	Correct derivatives	B1	
	$S = (2\pi) \int y \left(\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 \right)^{\frac{1}{2}} dt = (2\pi) \int 4t^3 \sqrt{(12t^3)^2 + (12t^2)^2} dt$ $= (2\pi) \int 4t^3 (144t^6 + 144t^4)^{\frac{1}{2}} dt$			
	M1: Substitutes their derivatives into	Attempt to factor out at least t^4 -		
	$S = (2\pi) \int 4t^3 (144t^4)^{\frac{1}{2}} (t^2 + 1)^{\frac{1}{2}} dt$	numerical factor may be left	M1	
	$S = 96\pi \int_{0}^{1} t^{5} \left(t^{2} + 1\right)^{\frac{1}{2}} dt$	Correct completion	A1	
	• 0		(4)	
(b)	$u^2 = t^2 + 1 \Rightarrow 2u \frac{du}{dt} = 2t \text{ or } 2u = 2t \frac{dt}{du}$	Correct differentiation	B1	
	$t = 0 \Rightarrow u = 1, \ t = 1 \Rightarrow u = \sqrt{2}$	Correct limits ALT: reverse the substitution later. (Treat as M1 in this case and award later when work seen)	B1	
	$S = (96\pi) \int t^5 \times u \times \frac{u}{t} du$			
	$S = (96\pi) \int (u^2 - 1)^2 \times u^2 \mathrm{d}u$	M1: Complete substitution A1: Correct integral in terms of <i>u</i> . Ignore limits, need not be simplified	M1A1	
	$S = (96\pi) \int (u^6 - 2u^4 + u^2) dx$	$du = (96\pi) \left[\frac{u^7}{7} - \frac{2u^5}{5} + \frac{u^3}{3} \right]$	dM1	
	M1: Expands and attempts to integrate			
	$S = 96\pi \left[\frac{u^7}{7} - \frac{2u^5}{5} + \frac{u^3}{3} \right]_1^{\sqrt{2}} = 96\pi \left\{ \left(\frac{\sqrt{2}^7}{7} - \frac{2\sqrt{2}^5}{5} + \frac{\sqrt{2}^3}{3} \right) - \left(\frac{1}{7} - \frac{2}{5} + \frac{1}{3} \right) \right\}$			
	M1: Correct use of their changed limits (both to be changed) ALT: If sub reversed, substitute the original limits			
	$S = \frac{192\pi}{105} \left(11\sqrt{2} - 4 \right)$	Cao eg $\frac{64\pi}{35}$	A1	
			(7) Total 11	

Question Number	Scheme		Notes	Marks
8.	$I_n = \int_0^{\ln 2} \tanh^{2n} x dx, n \ge 0$			
(a)	$\tanh^{2n} x = \tanh^{2(n-1)} x \tanh^2 x$			B1
	$\tanh^{2n} x = \pm \tanh^{2(n-1)} x \left(1 - \operatorname{sech}^{2} x\right)$			M1
	$I_n = \int_0^{\ln 2} \tanh^{2(n-1)} x dx - \int_0^{\ln 2} \tanh^{2(n-1)} x \operatorname{sech}^2 x dx$			
	M1: Correctly substitutes for I_{n-1} and obtains			
	$I_n = I_{n-1} - \left[\frac{1}{2n-1} \tanh^{2n-1} x \right]_0^{\ln 2} \qquad \int \tanh^{2(n-1)} x \operatorname{sech}^2 x dx = k \tanh^{2n-1} x$		$anh^{2(n-1)} x \operatorname{sech}^2 x dx = k \tanh^{2n-1} x$	M1A1
		A1:	Correct expression	
	$=I_{n-1}-\frac{1}{2n-1}\left(\frac{3}{5}\right)^{2n-1}*$	Corr	ect completion with no errors	A1*
				(5)
ALT:	$I_n - I_{n-1} = \int_0^{\ln 2} \left(\tanh^{2n} x - \tanh^{2(n-1)} x \right) dx$	dx		
	$= \int_0^{\ln 2} \tanh^{2(n-1)} x \left(\tanh^2 x - 1 \right) dx$			B1
	$= \int_0^{\ln 2} \tanh^{2(n-1)} x \left(-\operatorname{sech}^2 x\right) dx$	$=\int_{0}^{\infty}$	$\tanh^{2(n-1)} x \left(\pm \operatorname{sech}^{2} x\right) dx$	M1
	1.0	M1:	Obtains	
	$I_n - I_{n-1} = -\left[\frac{1}{2n-1}\tanh^{2n-1}x\right]_0^{\ln 2}$	$\int t^2$	$anh^{2(n-1)} x \operatorname{sech}^2 x dx = k \tanh^{2n-1} x$	M1A1
	20.1	A1:	Correct expression	
	$=I_{n-1}-\frac{1}{2n-1}\left(\frac{3}{5}\right)^{2n-1}*$	Corr	ect completion with no errors	A1*
(b)	$I_0 = \ln 2$	The	integration must be seen.	B1
	$I_2 = I_1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$	App	lies the reduction formula once	M1
	$I_2 = I_0 - \frac{1}{1} \left(\frac{3}{5}\right)^1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$	form		M1A1
		A1:	Correct expression	
	$I_2 = \ln 2 - \frac{84}{125}$	cao		A1
	Special Case:	43.55		
	If I4 is found award B1 for I0 or I1 and M	1M0.	A0A0	

PhysicsAndMathsTutor.com					
	(b) Alternative				
	$I_1 = \int_0^{\ln 2} \tanh^2 x dx = \int_0^{\ln 2} (1 - \operatorname{sech}^2 x) dx$				
	$I_1 = \left[x - \tanh x\right]_0^{\ln 2}$	Correct integration	B1		
	$I_2 = I_1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$	Applies the reduction formula once	M1		
	$I_1 = \ln 2 - \tanh (\ln 2) = \ln 2 - \frac{3}{5}$	M1: Uses limits A1: Correct expression	M1A1		
	$I_2 = \ln 2 - \frac{3}{5} - \frac{1}{3} \left(\frac{3}{5}\right)^3$				
	$= \ln 2 - \frac{84}{125}$		A1		
			(5)		
			Total 10		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL		